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The quantum phase problem is investigated by a synthesis of the evolution operator
technique and method of invariants. This approach has been found to be quite effective
to disclose interrelationship between geometric phases differing in the nature of evolution
and to obtain results for them without invoking the concept of parallel transport in the
projective Hilbert space. The usefulness of the method developed is ascertained by studying
the geometric phases associated with spinor evolutions in rotating magnetic field.

1. Introduction

Followed by early implications in optics [27] and chemical physics [12,13,20–
22], the quantum phase problem has been studied in great detail in the context of
nonrelativistic quantum mechanics. For example, when a quantal system in a given
eigenstate is transported adiabatically around a closed circuit in the parameter space
of the Hamiltonian, it acquires, in addition to the usual dynamical phase, a geometrical
phase often called the Berry’s phase [4]. In a followup to the original work, Aharonov
and Anandan (AA) [1] removed the constraint implied by the adiabatic assumption and
derived an approach to the phase problem in which the phase was shown to arise from
the dynamical evolution of the quantal system in the projective Hilbert space rather
than in the parameter space of the Hamiltonian. Later, Berry’s phase has been found
to appear in a still more general context. Neither adiabaticity [1], nor unitarity [30],
nor even cyclicity [33] is a prerequisite for the evolution of a state to produce the
geometrical phase. Also there exists a description [24] of the phase problem purely
in terms of the geometry of the (open) curve in the ray space without invoking a
Hamiltonian or a Schrödinger-like governing equation.

Besides all approaches noted above, the method of invariants (MI) [19] has
been judiciously used [8,9,17,23] for a conceptually simple and elementary way of
defining the geometric phase. In the MI, the exact solutions of a time-dependent (TD)
Schrödinger equation are related to those of a Hermitian invariant of the Hamiltonian
by a phase factor often called the LR phase according to the names of the originator
(Lewis and Riesenfeld [19]) of the method. In studying the phase problem within the
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framework of this approach one is led to a projective Hilbert space which is spanned
by the instantaneous eigenstates of the LR invariant, and the geometric phase is due
to holonomy in a line bundle over the generalized parameter space associated with the
invariant. Although the adiabatic hypothesis is apparently removed [8,9,17,19,23] in
the MI, the relation of the phase obtained to that of Berry or of AA is not immediately
clear. One of our objectives in the present work is to reveal the interrelationship
between the geometric phases. We propose to accomplish this by dealing with a
variant of the evolution-operator technique (EOT) derived by Cheng and Fung [10].
The other point of our interest is to seek a realization of the geometric phase without
making recourse to the use of so called parallel transport which has always played a
central role [1,32] in such studies. Interestingly, we shall demonstrate that the initial
conditions on the invariant determine the nature of evolution of the quantal system.

In section 2, we quote some of the results from the theory of time-dependent
invariants [19] for a general quantum system whose Hamiltonian operator H(t) is
explicitly time dependent. We derive in section 3 an evolution-operator technique
with particular emphasis on those points which in conjunction with the results of MI
could achieve the objectives of the present work. In section 4, we seek a realization for
the geometric phases in terms of variations in the initial condition of the invariant. Here
we also clarify how the nature of evolution of the quantal system depends crucially on
the choice for initial condition. In order to demonstrate the usefulness of the method
developed we calculate in section 5 the result for Berry’s and AA phases for a spin-1/2
particle in a rotating magnetic field. Finally, in section 6 we make some concluding
remarks.

2. Time-dependent invariants

Consider a quantal system whose Hamiltonian operator H(t) is an explicit func-
tion of time. The non-trivial Hermitian operator I(t) is an invariant of the problem
if

dI(t)
dt

=
∂I(t)
∂t

+
1
i~

[I ,H] ≡
[
− i

∂

∂t
+
H

~
, I(t)

]
= 0. (1)

Lewis and Riesenfeld [19] found that if I(t) is one of the complete set of commuting
observables having no time derivative with eigenstates |λ,κ, t〉 satisfying

I(t)|λ,κ, t〉 = λ|λ,κ, t〉 (2a)

and

〈λ′,κ′, t|λ,κ, t〉 = δλλ′δκκ′ , (2b)

then the eigenvalues λ are time independent (TI) although the eigenstates are TD. The
set of exact solution |ψ(t)〉 of the Schrödinger equation are related to |λ,κ, t〉 by∣∣ψλκ(t)

〉
= eiαλκ(t)|λ,κ, t〉 (3)
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with the phase factor

αλκ(t) =
1
~

∫ t

t0

〈
λ,κ, t′

∣∣∣∣i~ ∂∂t′ −H(t′)

∣∣∣∣λ,κ, t′
〉

dt′. (4)

Clearly, the LR phase αλκ(t) is a part of the Schrödinger wave function and appears
to be derivable without adiabatic hypothesis. The second term in (4) stands for the
dynamical phase. It is of interest to identify the first term with any of the geometrical
phases because for any situation the geometric phase is the difference of a total phase
and a dynamical phase, and also because it was not obvious from the pioneering work
of Mizrahi [23].

3. Evolution-operator technique

Let us assume for the sake of generalization that H(t) is not necessarily cyclic
in some parameters which induce the time evolution. Since in the Schrödinger pic-
ture, observables are regarded as constant in time, it will be tempting to consider the
evolution equation

i~
∂

∂t

∣∣ψ(t)
〉

= H(t)
∣∣ψ(t)

〉
(5)

in the interaction picture. Let U (t) be a unitary operator that recovers H(t) from a
different Hamiltonian H̃(t) through the similarity transformation

H(t) = U†(t)H̃(t)U (t) (6)

and construct a new state ∣∣ψ̃(t)
〉

= U (t)
∣∣ψ(t)

〉
(7)

from the state |ψ(t)〉. Clearly,〈
ψ(t)

∣∣H(t)
∣∣ψ(t)

〉
=
〈
ψ̃(t)

∣∣H̃(t)
∣∣ψ̃(t)

〉
. (8)

Equation (8) shows that dynamical phases of H(t) and H̃(t) are the same. Use of (7)
in (5) gives the evolution equation for |ψ̃(t)〉 as

i~ ∂
∂t

∣∣ψ̃(t)
〉

= H(t)
∣∣ψ̃(t)

〉
, (9)

where

H(t) = H̃(t)− i~U (t)U̇†(t). (10)

Interestingly, the evolution equations (5) and (9) for |ψ(t)〉 and |ψ̃(t)〉 have the same
form. But an added advantage of the latter is that, it can be put into a Schrödinger-like
picture by an appropriate choice for the operator U (t) in (6) and (7) such that H(t) is
Hermitian and [

H(t),H(t′)
]

= 0 ∀t, t′. (11)
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This implies thatH(t) is diagonal for all time in some representation. More specifically,
for a class of TD Hamiltonian that satisfies

H(t) = e−iεAtH(0)eiεAt, (12)

the result in (9) describes the evolution equation in the Schrödinger picture with TI
Hamiltonian

H = H(0)− εA. (13)

Thus, equation (5) with H(t) given in (12) can be regarded as an evolution equation
in the interaction picture with εA playing the role of the unperturbed Hamiltonian H0

in the transformation [29] between (12) and (13).
As a consequence of (11), |ψ̃(t)〉 in (9) can be found from |ψ̃(0)〉 as [6]∣∣ψ̃n(t)

〉
= e−

i
~
∫ tH(t′) dt′∣∣ψ̃n(0)

〉
, (14)

where |ψ̃(0)〉 satisfies the eigenvalue equation

H(0)
∣∣ψ̃n(0)

〉
= λn

∣∣ψ̃n(0)
〉
. (15)

Using (14) in (7), one can obtain the solution of (5) as∣∣ψn(t)
〉

= e−
i
~
∫ t〈H(t′)〉n dt′U †(t)

∣∣ψ̃n(0)
〉

(16)

with the initial condition ∣∣ψ(0)
〉

= U †(0)
∣∣ψ̃n(0)

〉
. (17)

Substituting (10) in (16) we have∣∣ψn(t)
〉

= eiγD(t)+iγG(t)[U †(t)∣∣ψ̃n(0)
〉]′

, (18)

where [U †(t)|ψ̃n(0)〉]′ does not involve any explicit TD phase factor. The dynamical
and geometrical phases γD(t) and γG(t) are then given by

γD(t) = −1
~

∫ t 〈
ψ̃n(t′)

∣∣H̃(t′)
∣∣ψ̃n(t′)

〉
dt′ (19a)

and

γG(t) = −1
~

∫ t 〈
H(t′)

〉
n

dt′ − γD(t) + θ(t), (19b)

with θ(t), the phase of U †(t)|ψ̃n(0)〉, which appears to introduce some kind of non-
uniqueness for γG(t). Since the actual geometric phase is a uniquely defined property
of the closed path in the projective Hilbert space [20–22] our choice for U (t) should
be constrained to give θ(t) = 0. This choice reduces γG(t) into the form

γG(t) = i
∫ t 〈

ñ(u)
∣∣ ˙̃n(u)

〉
du,

∣∣ñ(t)
〉

= U †(t)
∣∣ψ̃n(0)

〉
. (20)
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The geometrical phase has been expressed in the same way as that in Berry. In the
treatment of Berry, |ñ(t)〉 refers to an instanteneous eigenstate of the Hamiltonian
H(t) because of the assumed adiabatic approximation. But in (20), |ñ(t)〉 need not
necessarily be the instanteneous eigenstate. This waives the adiabatic assumption.

4. Method of invariant and geometric phase

We can now exploit some of the results obtained in sections 2 and 3 to examine
the effectiveness of MI to obtain phases of Berry [4] and of Aharonov and Anandan [1].
In their work with the EOT, Cheng and Fung [10] obtained an equation similar to that
in (9) by factoring out the evolution operator for (5) in the form

U (t, 0) = U (t)R(t) (21)

and found ∣∣ψ(t)
〉

= eiγD(t)+iγB(t)
∣∣n(t)

〉
. (22)

Here |n(0)〉 is the eigenstate of H(0) instead of H(0). In this approach one may make
different choices of U (t) and R(t) to get an unique |ψ(t)〉 for (5). The value of the
dynamical phase will not depend on the choice U (t). But as one goes on changing
the choice for U (t), |n(t)〉 in (20) will develop a phase. The change of phase is
compensated by a change in the value γB(t) and makes |ψ(t)〉 choice independent.
In particular, for cyclic evolution of period T , they recovered the Berry’s phase by
choosing UB(t) as

UB(T )
∣∣n(0)

〉
=
∣∣n(0)

〉
. (23)

Their second choice was the parallel transport〈
n(0)

∣∣UA(t)U̇
†
A(t)

∣∣n(0)
〉

= 0 (24)

of the state vector along a closed circuit in the projective Hilbert space. In this case,
γB(T ) vanishes identically and one gets the geometric phase α from

UA(T )
∣∣n(0)

〉
= eiα

∣∣n(0)
〉
, (25)

which is precisely the result obtained by Anandan [2].
In the following we now examine how the form of the EOT derived by us gives

the AA phase via equation (20) without going through any parallel transport. This will
depend on the choice of the initial state as an eigenstate of H(0) and the relationship
between MI and EOT. In the bargain, this will determine the conditions on the choice
of the initial form of invariants to produce the phases of Berry and AA. To that end
we start with (20) and impose the initial condition

I(0) = kH(0) (26)
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on I(0). From (15) and (26), it is clear that |ψ̃n(0)〉 is also an eigenfunction of I(0).
The unitarity of U (t) can be used to recast (15) into the form

I(t)
∣∣ñ(t)

〉
= λ

∣∣ñ(t)
〉
, (27)

where

I(t) = U†(t)I(0)U (t). (28)

With the help of equation (10), it can be shown that I(t) satisfies the equation for a con-
stant of the motion. This is explicitly demonstrated in appendix A. Similarly, exploiting
the evolution equation for U (t, 0) one can demonstrate in the notation of [10] that

IB(t) = U (t, 0)IB(0)U †(t, 0) (29)

with

IB(0) = kH(0) (30)

also satisfies (1). This is proved in appendix B.
We like to emphasize that although IB(t) in (29) obeys the equation for the

constant of the motion, initial condition (30) suggests IB(t) as a time-dependent action
operator and İB(t) = 0 as the quantum analogue of the time average of the classical
action variable I [18]. This identification can further be substantiated from the fact that
in the zeroth order approximation, i.e., when the system is nearly closed, U (t)U̇ †(t)
is negligible. Consequently, in this limit the exact invariant in (28) is proportional to
the action variable I(∼H) [3,11]. Thus the operator IB(t) in (29) may be regarded
as the action operator close to the invariant for adiabatic evolution of the system. As
a result the geometric phase obtained from (20) by using eigenstate of (30) refers to
that of Berry while the one obtained by using |ψ̃n(0)〉 gives precisely the AA phase.
This shows that the conditions on I(0) govern the evolution of the quantal system and
thus supplement the usual interpretation based on parallel transport of the phase of the
system according to some prescribed natural connection.

5. Spin-1/2 particle in a rotating magnetic field

It is felt [34] that cyclic and/or noncyclic spinor evolutions resulting in a pure
geometric phase may be realizable in neutron polarimetric experiments [5,28]. There-
fore, it will be of some interest to study the geometric spinor phase in a rotating
magnetic field through use of our results in (26) and (30), which we believe to be
the most significant findings of the present work. The appropriate Hamiltonian for the
two-state problem under consideration is given by

H(t) =
b

2
~B(t) · ~σ (31)

with

~B(t) = B(sin θ cosωt, sin θ sinωt, cos θ). (32)
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In (31) and (32), B, θ,ω are constants and

b = − e
2mc

gB

is related to the Larmor frequency. Obviously, ~σ stands for the Pauli spin matrices.
Clearly, H(t) can be written in the form of (12) with

U (t) = e
i
2ωσ3t (33)

and thus,

H =
b

2

(
cos θ − ω/b sin θ

sin θ −(cos θ − ω/b)

)
. (34)

Using the eigenvalues and eigenfunctions of (34), the eigenstates of I(t) given in (28)
can be written in the form

|ñ(t)〉 =
1√
Ω


√

Ω
2

+
nb

2

(
cos θ − ω

b

)
e−

i
2ωt

n b2 sin θ√
Ω
2 + nb

2 (cos θ − ω
b )

e
i
2ωt

 (35)

with

Ω = b

√
1− 2ω

b
cos θ +

ω2

b2 and n = ±1. (36)

From (20) and (35)

γG = −n
[
π
b

Ω

(
cos θ − ω

b

)]
. (37)

Using the properties of spinor under a rotation of 2π, the geometric phase of the state
|ñ(0)〉 can be found from (37) as

γG = −nπ
[

1− b

Ω

(
cos θ − ω

b

)]
. (38)

Interestingly, (38) represents the phase factor of AA [2,6,26]. On the other hand,
using the eigenstate of H(0) rather than that of H(0), we could obtain the Berry’s
phase [6,26]

γB = −nπ[1− cos θ]. (39)

6. Conclusion

The evolution operator technique represents a powerful method to study the geo-
metric phase problem. Very recently, a family of unitary operators that characterizes
the EOT has been used to provide an interesting description for the TD harmonic
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oscillator problem [31]. We have chosen to work with a variant of the EOT which
is essentially a quantum analogue of the time-dependent canonical transformation in
classical mechanics. The form of the EOT used by us when tied in with the method
of invariants imposes conditions on I(0) for the time-dependent invariant I(t) to be
an action operator or a constant of the motion. This provides a basis to examine the
relationship between the LR phase and that of Berry or AA and to obtain results for
geometrical phases from a unified viewpoint.

The geometric phase was encountered in molecular systems [12,13,20–22] long
before the work of Berry, and currently there has been a growing interest to study the
effect of geometric phase on chemical reactions [7,14,16,25,35]. A similar problem
was also envisaged and beautifully expounded by Kozumi and Sugano [15] for the two
electronic level systems. In view of this we believe that the simple minded realization
of the geometric phase sought in this paper will be of some interest for researchers
working in this field of investigation.

Acknowledgements

This work is supported by grants (SR/SY/P-17/92 and SP/S2/K-47/90) from the
Department of Science and Technology, Govt. of India.

Appendix A

To show that I(t) in (28) is a constant of the motion, we require to verify (1) for
it. To that end we begin by recasting (10) in the form

U †H−HU † = −i~U̇ †(t), (A.1)

HU − UH = i~U̇ (t) (A.2)

and differentiating (28) partially with respect to ‘t’. The partial derivative is given by

∂I

∂t
= U̇ †(t)I(0)U (t) + U †(t)I(0)U̇ (t). (A.3)

Using of (A.1) and (A.2) in (A.3) gives

∂I

∂t
=

1
i~
{
HU †I(0)U − U †H(t)I(0)U + U †I(0)H(t)U − U †I(0)UH

}
. (A.4)

Equation (A.4) in conjunction with (26) and (28) leads to

∂I

∂t
=

1
i~
[
H , I(t)

]
+
k

i~
{
U †
(
H(0)H(t)−H(t)H(0)

)
U
}
. (A.5)

Now, by making use of (11) ,we recover our desired equation

dI(t)
dt

=
∂I(t)
∂t

+
1
i~

[I ,H] = 0. (A.6)
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We emphasize here that it is not possible to derive (A.6) from (A.5) in a straightforward
manner unless one uses (26). Other choices of I(0) as in (30) require to redefine the
time evolution of I(0). This is clarified in appendix B.

Appendix B

To derive equation (1) for IB(t) in (29) with the initial condition in (30) we follow
the notations of Cheng and Fung [10]. Focusing our attention on (2.5) and (2.22) of
[10] we write

H(0)
∣∣m(0)

〉
= µm

∣∣m(0)
〉

(B.1)

and

U (t)
∣∣m(0)

〉
=
∣∣m(t)

〉
. (B.2)

Equation (B.1) implies that

I(0)
∣∣m(0)

〉
= µm

∣∣m(0)
〉
. (B.3)

Employing the unitarity properties of U and R, one can write equation (B.3) in the
form

U (t)I(0)R(t)R†(t)U †(t)U (t)
∣∣m(0)

〉
= µmU (t)

∣∣m(0)
〉
. (B.4)

Since both R and I(0) are diagonal in the basis {|m(0)〉}, equation (B.4) can further
be rearranged to write

U (t)R(t)I(0)R†(t)U †(t)U (t)
∣∣m(0)

〉
= µmU (t)

∣∣m(0)
〉
. (B.5)

Using equations (21) and (29), one can reduce it as

IB(t)
∣∣m(t)

〉
= µm

∣∣m(t)
〉
. (B.6)

It appears from equation (B.6) that although time evolution of IB(t) is guided by
evolution operator U (t, 0) its eigenfunction is evolved by one of its factor U (t) in (21).
Consequently, |m(t)〉 can be regarded as the part of the instanteneous eigenfunction of
H(t). Partial differentiation of equation (29) with respect to ‘t’ gives

∂IB

∂t
= U̇ (t, 0)IB(0)U †(t, 0) + U (t, 0)IB(0)U̇ †(t, 0). (B.7)

To remove the time derivative of U and U † we use equation (2.4) of [10] and get

∂IB

∂t
=

1
i~
[
HU (t, 0)IB(0)U †(t, 0)− U (t, 0)IB(0)U †(t, 0)H

]
. (B.8)

Further use of equation (29) leads to

∂IB(t)
∂t

+
1
i~

[IB,H] = 0.
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This completes the proof that IB(t) also satisfies equation (1) although it is not a
constant of the motion.
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